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Abstract. We present a new variationnal method for calculating the ground state energy of an electron
bound to an impurity located in a quantum well. This method relies on an envelope function which is
determined exactly from a formal minimization procedure. The obtained energies are lower by as much as
10% than the ones found by the widely used free electron envelope function. Their large width limits are
reached with exponentially small corrections as they should. We also find that, except for narrow wells,
the shape of these exact envelope functions strongly depends on the impurity position, being consequently
quite different from the usual free electron ones. In order to discuss the improvements brought by our
new procedure in the most striking way, we have used a model semiconductor quantum well with infinite
barrier height and simplified band structure. Extensions can be made to finite barrier and more realistic
band structures, following the same technique.

PACS. 73.21.Fg Quantum wells

In this paper, we propose a new variationnal procedure to
determine the ground state energy of an electron bound to
an impurity, when this impurity is located inside a quan-
tum well. Although this problem has been studied for a
long time [1–8], we have been led to reconsider it because
the solution proposed up to now is potentially not accu-
rate enough to be used in the determination of the exciton
dead layer we are going to present in a forthcoming pa-
per. Indeed, in this dead layer problem, we will have to
use an energy analogous to the ground state energy of an
electron bound to an impurity, and which has to be valid
up to (ax/L)3 at least in the large L limit, ax being the
Bohr radius and L the well width. Unfortunately, while
the previous procedure [1] of course gives the correct lim-
iting values for small and large L, it incorrectly gives the
way the energy approaches its large L value, merely be-
cause it was essentially designed to describe narrow wells.
Specifically the corrections are quadratic instead of expo-
nentially small as they should. This dramatically affects
the energy of an exciton in a large width quantum well
since incorrect quadratic corrections add a spurious con-
tribution to the exciton center of mass energy. This urged
us to study again the problem of an electron bound to an
impurity in order to find more accurate solutions.
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Scientifique et aux Universités Paris 6 et Paris 7

The new variationnal procedure presented here gives
an energy somewhat lower than the one found previously
and has the required property of reaching its large L value
with exponentially small corrections. This procedure is
conceptually somewhat different from the previous one
since it relies on the exact determination of the optimum
envelope function [2,9] of an electron bound to an impu-
rity located in a quantum well. We show that, except for
narrow wells, this envelope function crucially depends on
the impurity position, being quite different from the usual
free electron one. As this free electron envelope function
is by now a widely used concept, it is of major importance
to realize that it can be indeed so far from the exact one:
once more we do see that wave functions are much more
tricky to obtain correctly than energies and that rather
bad ones can still give pretty good energy values.

In order to explain our procedure and to compare it
to the previous one in a simple and efficient way, we have
taken the case of the simplest model semiconductor quan-
tum well, with infinite barrier height and isotropic effec-
tive mass. The solutions then depend on two parameters
only: the well width and the impurity position, so that the
comparison of the two procedures is quite easy. We wish
to stress that, although somewhat heavier numerically, our
new procedure can also be used for more realistic quan-
tum wells [10]. In particular its extension to finite barrier
height will be the subject of a forthcoming note.
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The paper is organized as follows:

– In Section 1, we present the problem and briefly recall
the expected limiting behaviors for wide and narrow
quantum wells.

– In Section 2, we consider a trial function which is the
product of a function of the electron position z inside
the well by a function of the electron distance to the
impurity located at

ri = (0, 0, zi)
〈 r|ϕ 〉 = f(z) g(|r− ri|). (1)

This form of trial function is the only one we know for
which the boundary condition 〈 r|ϕ 〉 = 0 on the well
borders z = ±L/2 (or the well sample in the case of
a finite barrier height), can be enforced in a tractable
way for any (x, y). By using for g(r′) the following
function:

g(r′) exp(−r′/λax) (2)

which properly reproduces the known limiting cases,
we show how one can easily recover the energies in
the large L limit. In his pioneering work on impurity
in quantum wells, Bastard [1] has used this type of
trial function with, for f(z), the free electron envelope
function f(z) = cosπz/L in order to get the ground
state binding energy for intermediate well widths. We
recall his main results and explicitly show that this
free electron envelope function generates undesirable
(ax/L)2 corrections in the large L limit.

– In Section 3, we formally determine the optimal f(z),
i.e. the f(z) which gives the lowest energy for the set of
g(r′) given in equation (2). We find that, for a given λ,
the optimal f(z) is solution of a second order differen-
tial equation which can be solved analytically in terms
of degenerate hypergeometric functions [11]. From a
minimization procedure with respect to λ, we finally
get the ground state energy ε(zi, L) and the envelope
function f(z) as a function of the impurity location zi
and well width L, for any zi and L.

– In a last section, we discuss the results and compare
them to the previous procedure which uses the usual
free electron envelope function.

1 The problem and its expected solutions
for wide and narrow wells

We consider a quantum well extending between −L/2
and L/2 and an impurity located at ri = (0, 0, zi) in-
side the well. The electron Hamiltonian in the presence of
the impurity reads H = p2/2m− e2/|r− ri|+U(z) where
the confinement potential U(z) is given by U(z) = 0 if
−L/2 < z < L/2 and U(z) = U0 otherwise. In the fol-
lowing we will assume U0 =∞ for simplicity. However we
will on occasions indicate the modifications brought by
a finite U0. In the following, it will appear appropriate to

use the variable r′ = r−ri instead of r. The corresponding
Hamiltonian then reads

H =
p2

2m
− e2

r′
+ vzi(z

′) (3)

where the confinement potential is now given by
vzi(z′) = 0 if d− < z′ < d+ and vzi(z′) = ∞ other-
wise, with d± = ±L/2 − zi. Due to the well confine-
ment, the H eigenstates 〈r|ϕ〉 = ϕ(x, y, z) are such that
ϕ(x, y,±L/2) = 0 for infinite barriers. As this boundary
condition must be fulfilled for any (x, y), it corresponds
to an infinite number of boundary conditions. One can
enforce this equation in a tractable way by using a trial
function having a function of z as a prefactor, namely
〈r|ϕ〉 ≈ f(z)g(r). The boundary condition is then satisfied
by requiring f(±L/2) = 0. As the quality of a trial func-
tion strongly relies on the adequacy of its choice, which
usually results from a precise analysis of the expected lim-
iting values, we now briefly recall what are the electron
ground states in the small and large L/ax limits.

1.1 Small well width L� ax

For narrow quantum wells, the Coulomb interaction holds
the electron close to the impurity in the (x, y) direc-
tion, while it has little effect on the z motion due to
the strong confinement in the z direction. We thus ex-
pect a contribution to the ground state binding energy
equal to −4Rx, with Rx = me4/2~2 = ~2/2ma2

x, coming
from the 2D motion in the (x, y) plane and a ~2π2/2mL2

contribution from the z motion inside the well. Conse-
quently the ground state energy of an electron bound to
an impurity in a narrow quantum well should behave as
Rx[π2(ax/L)2−4+. . . ] in the small (L/ax) limit; the corre-
sponding wave function cos(πz/L) exp[−2(x2 +y2)1/2/ax]
is basically independent of the impurity position zi inside
the well since the relevant variable (z−zi)/ax stays always
very small.

1.2 Large well width L� ax

On the opposite, for large well width, the ground state
energy drastically depends on the impurity position.

a) Impurity far from the walls

When the impurity is at a distance large from the walls
compared to ax, the electron which is forced to stay close
to the impurity by Coulomb interaction does not feel these
walls; the system looks like a 3D hydrogen atom in vac-
uum. Its ground state wave function exp(−r′/ax) corre-
sponds to the (n = 1, l = 0 = m) hydrogenöıd state and
its energy is (−Rx) with exponentially small corrections
of the order of e−2L/ax which come from the probability
for the electron to be on the wall.
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b) Impurity just on the wall

When the impurity gets close to the wall, the ground state
(n = 1, l = 0 = m) wave function has to distort in or-
der to satisfy the boundary condition ϕ(x, y,±L/2) =
0. Just on the wall, it is easy to check that, the
wave function z′ exp(−r′/2ax) which corresponds to the
(n = 2, l = 1,m = 0) hydrogenöıd state is eigenfunction of
H, and fulfills this boundary condition, the corresponding
energy being (−Rx/4).

1.3 Expected solutions

We thus conclude that, in the above three limiting cases
for which we easily know the answer, the wave function is
well reproduced by 〈r|ϕ〉 = f(z) exp(−|r − ri|/λax) with
λ = 1/2 for narrow wells and λ = 1 or 2 for large wells
depending on the impurity position, far or close to the
wall respectively.

If we now consider the energy, it diverges for small L
due to the confinement in the z direction. This is why one
often introduces a quantity which stays finite for all L by
extracting the small L diverging contribution of ε(zi, L).
This quantity, known as the “electron binding energy”
εB(zi, L) is defined by

ε(zi, L) =
~2

2m
π2

L2
+ εB(zi, L). (4)

With increasing L/ax this binding energy goes from
(−4Rx) to (−Rx) when the impurity is far from the wall,
and from (−4Rx) to (−Rx/4) when the impurity is on the
wall. Let us however stress that, as ε(zi, L→∞) reaches
its asymptotic value (−Rx or −Rx/4) with exponentially
small corrections, εB reaches the same asymptotes much
more slowly, the corrections being of the order of (ax/L)2;
so that the quantity εB(zi, L) is somewhat inappropriate
if we are interested in rather large quantum wells.

2 Expected properties of the trial function

We want to determine the ground state energy of
the Hamiltonian (3), i.e. the minimum of ε(zi, L) =
〈ϕ|H|ϕ〉/〈ϕ|ϕ〉. Introducing the trial function given by
equation (1) and making by part integrations we find:

〈ϕ|H|ϕ〉 =
~2

2m

∫
d3r

[
(fg′)2 − g2

(
ff ′′ +

2
r′ax

f2

)]
(5)

where f ′ and f ′′ are the derivatives of f . If we restrict our-
selves to the g(r′) functions given by equation (2), we get

〈ϕ|H|ϕ〉 = Rx

[
1
λ2
− a2

x

∫
d3re−2r′/λax

(
ff ′′ +

2
r′ax

f2

)]
(6)

with the normalization 〈ϕ|ϕ〉 = 1. We perform the integra-
tion over (x, y) in equation (6) and in the normalization
condition. By writing

f(z) =

√
1

2π

(
2
λax

)3

f̂

(
2(z − zi)
λax

)
(7)

(the ax factors come from dimensional arguments while
the other prefactors are just introduced for simplifying
the following algebra), the normalization condition reads

1 =
∫ D+

D−

du(1 + |u|)e−|u|f̂2(u) (8)

while the Hamiltonian average value equation (6) is now
given by

〈ϕ|H|ϕ〉 =

Rx
λ2

{
1− 4

∫ D+

D−

du e−|u|
[
(1 + |u|)f̂ f̂ ′′ + λf̂2

]}
(9)

the boundary conditions being f̂(D±) = 0 with D± =
(2/λax)(±L/2 − zi). Due to the exponentials, the domi-
nant contributions to these integrals come from |u| ≤ 1.
For a given λ, the Hamiltonian average value is thus con-
trolled by the shape of f̂(u) for |u| close to 0, i.e. the shape
of f(z) in the neighbourhood of the impurity.
a) We know that, for impurity infinitely far from the
wall, the exact solution corresponds to f̂(u) constant. For
|D±| � 1, we thus expect f̂(u) to be constant f̂(u) ≈ b0
for |u| < `, the necessary decrease of f̂(u) to reach
f̂(D±) = 0 being pushed away to |u| ≥ ` (with ` being a
fraction of L/ax). The constant b0 can then be determined
by the normalization condition equation (8) which gives
b0 = 1/2. If we insert this f̂ into equation (9) we get

〈ϕ|H|ϕ〉 =
Rx
λ2

[
1− 4

∫ ∞
−∞

du e−|u|λb20

]
= Rx

(
1
λ2
− 2
λ

)
.

(10)

From it, we find that the minimum energy corresponds to
λ∗ = 1, so that this minimum is −Rx as expected for an
impurity far away from the walls. The corrections to this
(−Rx) value come from |u| larger than `. They are thus
exponentially small. If, instead of f̂(u) constant, we try
a somewhat more elaborate f̂(u) = b0 + b1 u + b2 u

2, we
can show that the minimum energy does correspond to
b1 = b2 = 0, i.e. f̂(u) indeed constant.
b) When the impurity is on the wall, and the other wall
is infinitely far away, we know that the exact solution cor-
responds to the (n = 2, l = 1, m = 0) hydrogenöıd state,
i.e. f̂(u) = a1u. If we use this solution for 0 < u < ` and
push the necessary decrease of f̂(u) to reach f̂(D+) = 0 at
u close to L/λax, the normalization condition equation (8)
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B =

1 +
C

A
+

1−A
A

�
e−D+ + eD−

2

�

1 +
C

A2
+

1−A2

A2

�
e−D+ + eD−

2

�
+

1−A
A

�
D+e−D+ −D−eD−

4

� (13)

leads to a2
1 = 1/8. So that equation (9) gives

〈ϕ|H|ϕ〉 =
Rx
λ2

[
1− 4

∫ ∞
0

du e−uλa2
1u

2

]
= Rx

(
1
λ2
− 1
λ

)
. (11)

Its minimum, obtained for λ∗ = 2, corresponds to −Rx/4,
the associated wave function being√

1
2π

(
2

2ax

)3 1√
8

2z′

2ax
e−r

′/2ax =
1

2
√
πa

3/2
x

e−r
′/2ax z

′

ax
(12)

as expected for the (n = 2, l = 1, m = 0) hydrogenöıd
state. As the corrections to this (−Rx/4) energy come
from the u ≥ ` region, they are, here again, exponen-
tially small. If we try to add some curvature by using
f̂(u) = a1u + a2u

2, we can check that the lowest energy
does correspond to a2 = 0.
c) The same procedure allows to get the way the energy
reaches its −Rx/4 value when the impurity approaches
the wall. Indeed, for an impurity at δ from it, i.e., for
zi = −L/2 + δ, we have d− = −L2 −

(
−L2 + δ

)
= −δ while

d+ = L− δ ≈ L. In order to fulfill the boundary condition
f(d−) = 0, we are led to take f̂(u) as f̂(u) = a1(u+δ̂) with
δ̂ = 2δ/λax. The normalization condition equation (8)
gives a2

1 =
(

1− 3δ̂/4
)
/8 while the Hamiltonian aver-

age value reads 〈ϕ|H|ϕ〉 = Rx[(1 − δ/2ax)/λ2 − 1/λ].
At first order in δ/ax, its minimum value corresponds
to λ∗ = 2 − δ/ax, i.e. 〈ϕ|H|ϕ〉min = Rx[−1/4 − δ/8ax]
which shows that the energy (−Rx/4) is reached with a
(−Rx/8ax) slope. This analytical result is in very good
agreement with the numerical calculations presented be-
low. It is possible to show that this slope is unchanged if
one adds some curvature to the f̂(u) function, i.e. if one
uses f̂(u) = a1(u+ δ̂) + a2(u+ δ̂)2.
d) In order to find the energy for intermediate zi one can
think to follow Bastard [1] and use for f(z) a function pro-
portional to the free electron envelope function cosπz/L,
as it fulfills the boundary conditions f(±L/2) = 0. In
agreement with his equations (7) and (14), we then get
the Hamiltonian average value equation (9) as 〈ϕ|H|ϕ〉 =
Rx[(1/λ2) + η2 − 2B/λ] with η = πax/L identical to his
(k1ax) and

see equation (13) above

where we have set A = 1 + λ2η2 and C = cos 2k1zi.
The main advantage of this free electron f(z) function

is to generate an analytical expression for the Hamiltonian

average value which has just to be numerically minimized
with respect to λ, the deduced energy having indeed the
correct limiting values for small and large L and for zi = 0
and zi = ±L/2.

We now show that, unfortunately, this energy does not
have the property required for using it in the exciton dead
layer problem, namely it does not reach its asymptotic
values in the large L limit faster than (ax/L)3.
(i) When the impurity is far from the walls, |D±| is large
and equation (13) gives B = A(A + C)/(A2 + C) so that
we get

〈ϕ|H|ϕ〉 = Rx

[
1
λ2

+ η2 − 2
λ

(
1 + C

η2λ2

C + (1 + η2λ2)2

)]
.

(14)

To lowest order in η, its minimum corresponds to λ∗ ≈
1 + η2C/(C + 1), so that the energy is given by Rx[−1 +
η2(1− C)/(1 + C) +O(η4)]. We thus see that, except for
C = 1, i.e. zi = 0, the corrections are in η2, i.e. in (ax/L)2.
(ii) When the impurity is just on the walls, i.e. for zi =
L/2, we have C = −1 and D+ = 0. For |D−| large, B
reduces to B = A/(A+ 1) so that we find

〈ϕ|H|ϕ〉 = Rx

[
1
λ2

+ η2 − 2
λ

(
1 + η2λ2

2 + η2λ2

)]
. (15)

In the small η limit, its minimum which is reached for
λ∗ ≈ 2 + 4η2, now corresponds to Rx[−1/4 + O(η4)]. We
thus conclude that, when taking f(z) to be cos(πz/L)
in equation (9), the asymptotic values of the energy are
reached with (ax/L)2 corrections, except just at the center
or at the borders of the well, the corrections being then
in (ax/L)4. In any case, they are much larger than the
exponentially small corrections we expect. We will show
that one can trace these spurious terms to the fact that
cos(πz/L) is not flat enough in the neighbourhood of the
impurity when compared to the exact f(z).

3 Exact determination of the optimum f̂

We now determine analytically the function f̂ which min-
imizes 〈ϕ|H|ϕ〉 as given in equation (9) provided that the
normalization condition (8) is fulfilled. Such an f̂ should
verify 0 = δ[〈ϕ|H|ϕ〉 − χ〈ϕ|ϕ〉] with χ being a Lagrange
multiplier. Using equations (8, 9), this gives

0 =
∫ D+

D−

du e−|u|
[
(1 + |u|)f̂δf̂ ′′

+
{

(1 + |u|)f̂ ′′ + 2 (λ− χ′(1 + |u|)) f̂
}
δf̂
]

(16)
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with χ′ = −χλ2/4Rx. We can rewrite the δf̂ ′′ part of this
integral in terms of δf̂ by integrating twice by part as, for
any h(u) function, we have∫ D+

D−

duhf̂δf̂ ′′ = −
∫ D+

D−

(hf̂)′ δf̂ ′ =
∫ D+

D−

(hf̂)′′ δf̂ (17)

provided that δf̂ ′(D±) is finite and δf̂(D±) = 0, as en-
forced by the boundary conditions f̂(D±) = 0. If we use
the above equation for h(u) = (1 + |u|)e−|u| equation (16)
becomes

0 =
∫ D+

D−

du e−|u|
[
2(1 + |u|)f̂ ′′ − 2uf̂ ′

+ (2λ− 2χ′ − 1 + (1− 2χ′)) |u|] δf̂ . (18)

As equation (18) has to be verified for any δf̂ , we get the
differential equation satisfied by the optimal f̂ by requir-
ing the bracket in equation (18) to be zero

(1 + |u|)f̂ ′′ − uf̂ ′ +
[
λ− χ′ − 1

2
+
(

1
2
− χ′

)
|u|
]
f̂ = 0.

(19)

Before solving this differential equation, let us note that
〈ϕ|H|ϕ〉 for such f̂ writes extremely simply in terms of
χ′. Indeed, if we insert the value of (1 + |u|)f̂ ′′, as given
by equation (19), into equation (9), we get 〈ϕ|H|ϕ〉 =
Rx(1− 4I)/λ2 where I, defined by

I =
∫ D+

D−

du e−|u|
{
uf̂f̂ ′ +

[
χ′ +

1
2

+
(
χ′ − 1

2

)
|u|
]
f̂2

}
(20)

is nothing but χ′: indeed an integration by part of the f̂ f̂ ′
term gives∫ D+

D−

du e−|u|f̂ f̂ ′ =
1
2

∫ D+

D−

du(|u| − 1)e−|u|f̂2. (21)

So that I reads

I = χ′
∫ D+

D−

du e−|u|(1 + |u|)f̂2 = χ′ (22)

due to the normalization condition equation (8). We thus
find

〈ϕ|H|ϕ〉 = −Rx ν2/λ2 (23)

where ν is related to the Lagrange multiplier χ through
ν2 = 4χ′ − 1 = −(1 + χλ2/4Rx). Note that a negative
energy corresponds to ν real and a positive energy to ν
imaginary.

This simple expression was actually to be expected. In-
deed, except for the constant term Rx/λ

2 in equation (9),
we essentially deal with an Hamiltonian problem. Pre-
cisely, after a single integration by parts, we can rewrite

equation (9) as:

〈ϕ|H|ϕ〉 − Rx
λ2

=
4Rx
λ2

∫
du e−|u|

×
[
(1 + |u|)f̂ ′2 +

(
1
2
− λ− |u|

2

)
f̂2

]
≡ 〈f̂ |H|f̂〉 (24)

(the change of variable dv = du/[e−|u|(1 + |u|)] would
make the similarity more obvious). Our differential equa-
tion, resulting from the minimization with respect to f̂ ,
is then equivalent to solving H|f̂〉 = χ|f̂〉. Once a solu-
tion, satisfying the normalization condition equation (8),
namely 〈f̂ |f̂〉 = 1, is known, the energy simply results
from 〈f̂ |H|f̂〉 = χ〈f̂ |f̂〉 = χ which is just the result found
in equation (23). This remark allows to see that our pro-
cedure can be extended quite easily to quantum wells with
finite barrier height: one has just to use the corresponding
Hamiltonian with finite U0.

The differential equation (19) for the optimal f̂ is
solved in the Appendix; its general solution is found to
be

f̂(u) = aM(1 + |u|) + bU(1 + |u|) (25)

where the functions M(v) and U(v) write in
terms of the confluent hypergeometric functions
M
(

1
2 ±

λ−1/2
ν , 1,∓νv

)
and U

(
1
2 ±

λ−1/2
ν , 1,∓νv

)
(see Eqs. A.9, 10, 12, 13).

The function f̂(u) of interest in our problem satisfies
f̂(D±) = 0. As D− < 0 < D+, we are led to introduce two
functions f̂(u), one for positive u and one for negative u.

f̂(u > 0) = a+M(1 + u) + b+U(1 + u)

f̂(u < 0) = a−M(1− u) + b−U(1− u). (26)

The four coefficients a± and b± are determined by enforc-
ing the boundary conditions f̂(D±) = 0 and by requiring
that f̂ and f̂ ′ are continuous for u = 0, as the full wave
function 〈 r|ϕ 〉 close to the impurity has this property.
The corresponding set of equations reads

a±M(1±D±) + b± U(1±D±) = 0
a+M(1) + b+ U(1) = a−M(1) + b− U(1) (27)

a+M′(1) + b+ U ′(1) = −a−M′(1)− b− U ′(1).

This set of homogeneous equations has a non zero solution
only if its determinant is zero. This condition reads

(A0 −A−) (B0 −A+) + (A0 −A+) (B0 −A−) = 0 (28)

with

A± =
M(1±D±)
U(1±D±)

A0 =
M(1)
U(1)

B0 =
M′(1)
U ′(1)

· (29)

From the corresponding a± and b±, we get the function
f̂(u) as

f̂(u) = a(A0 −A±)[M(1± u)−A± U(1± u)] (30)
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Fig. 1. Ground state energy in Rydberg unit as a function of
the reduced impurity position zi/L in a well of width L for
L/ax = 20 (dotted line), L/ax = 10 (dashed line), L/ax = 5
(solid line), ax being the Bohr radius. The limiting values for
large L are −1 for zi = 0 and −1/4 for zi = L/2.

where the upper sign corresponds to u > 0 and the lower
one to u < 0, the prefactor a being determined from the
normalization condition equation (8).

Equation (28) contains the parameters ν, λ, L and zi.
From it, we can numerically determine ν as a function of
λ,L and zi. By inserting this ν(λ,L, zi) into equation (23),
we determine the value of λ which minimizes 〈ϕ|H|ϕ 〉;
and from it, we finally obtain the ground state energy as
a function of L and zi, equation (30) giving the corre-
sponding exact envelope function.

4 Discussions and results

Figure 1 shows this ground state energy ε(zi, L) as a
function of the relative impurity position zi/L for three
rather large values of L/ax, namely L/ax = 20, 10, 5.
As expected, we see that this energy essentially goes from
(−Rx) to (−Rx/4) when the impurity moves from the
center to the border of the well. We can also check that
these curves move up when L decreases, due to the con-
finement. Except for quite narrow wells, this effect is how-
ever very small, even for intermediate L as can be seen on
Figure 2 which shows the energies for various L/ax, as a
function of the absolute impurity position of zi, starting
from zi = −L/2: we see that ε(zi, L) strongly decreases
over a distance of the order of 2ax from the well border,
this decrease being essentially the same for all L larger
than 8ax. Actually, 8ax corresponds to a rather narrow
quantum well if we note that all the points of such a (8ax)
width well lie within less than (4ax) from the walls.

In Figure 3, we show the same energies ε(zi, L) as a
function of L, in the large L range, for three positions of
the impurity. The dashed curves correspond to these en-
ergies calculated with the free electron envelope function
f(z) = cos(πz/L). We see that the exact f(z) generates
an energy typically 10% lower than the one obtained from
this free electron f(z), which is pretty sizeable and in any
case much more than what we anticipated.

In Figure 4, we plot the logarithm of the difference be-
tween these ε(zi, L) and their large L asymptotic values.
We do check that these asymptotic values are reached with

Fig. 2. Ground state energy in Rydberg unit as a function of
the absolute impurity position in Bohr radius unit ax, start-
ing from the well border −L/2 for L/ax = 5 (small dashed
line), L/ax = 6 (large dashed line). For L/ax ≥ 8 (solid lines)
the curves are almost indistinguishable. The limiting values for
large L are −1/4 for zi + L/2 = 0 and −1 for zi = 0.

Fig. 3. Ground state energy in Rydberg unit as a function of
the well width L in Bohr radius unit ax, for three impurity po-
sitions: zi = 0 (plotted for L/ax going from 3 to 9), zi = ±L/4
(plotted for L/ax going from 4 to 10) and zi = ±L/2 (plotted
for L/ax going from 5 to 11). The dashed lines correspond to
the same energy calculated with f(z) = cosπz/L.

exponentially small corrections once L is larger than 4ax.
It is actually surprising to find an extremely straight Ln
plot, which indicates that these corrections behave expo-
nentially for wells as narrow as 4ax. We also see in Figure 4
that the free electron envelope function f(z) = cos(πz/L)
gives larger corrections which are not exponentially small,
in agreement with equation (15).

The appropriate way to present the energy for fixed
zi as a function of L, starting from L = 0, is to plot the
binding energy εB(zi, L) defined in equation (4) as this
quantity stays finite when L → 0. Figure 5a shows this
binding energy for all L and Figure 5b shows it for narrow
wells only. As expected, when L increases from 0 to ∞,
this binding energy increases from (−4Rx) to (−Rx) for
zi = 0 and from (−4Rx) to (−Rx/4) for zi = L/2. Let us
stress that these binding energies still vary significantly
up to L/ax ≈ 8 due to the confinement energy introduced
artificially in εB(L, zi), while the large L asymptotic values
are reached much faster for ε(zi, L). This εB is indeed
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Fig. 4. Logarithm of the difference between the energy and its large L asymptotic value as a function of the well width L
for three impurity positions when calculated with the exact f(z) (solid lines): zi = 0 (plotted for L/ax going from 3 to 9),
zi = ±L/4 (plotted for L/ax going from 4 to 10) and zi = ±L/2 (plotted for L/ax going from 5 to 11). A linear dependence
indicates that the corrections to the asymptotic value behave exponentionally in L/ax. At this scale the solid line is essentially
indistinguishable from a straight line. The dashed lines correspond to the same energy calculated with f(z) = cosπz/L.

(a)

(b)
Fig. 5. Upper panel: binding energy εB as a function of the
well width L in Rydberg unit, for zi = L/2 (upper curve)
and zi = 0 (lower curve). The large L asymptotic values are
respectively −1/4 and −1, while for L → 0, εB goes to −4
for all impurity positions. Lower panel: same binding energies
in the small L range. The dashed curves correspond to the
energies calculated with f(z) = cosπz/L.

appropriate in the small L limit in order to have a finite
quantity, but rather meaningless for large L. In this limit,
the Coulomb potential confines the electron close to the

(a)

(b)

Fig. 6. The parameter λ∗ corresponding to the minimum of
〈ϕ|H|ϕ〉 for L/ax = 10, 5, 1 and 0.2 , as a function of the
impurity position zi in ax unit (upper panel) or in L unit (lower
panel). For L→∞, the limiting values are 1 for zi = 0 and 2
for zi = L/2 while for L→ 0 the limit is 1/2 for all zi.

impurity so efficiently that the well confinement does not
play any role.

Figure 6 shows the parameter λ∗ corresponding to the
minimum of 〈ϕ|H|ϕ 〉 as a function of the impurity po-
sition zi in ax unit (Fig. 6a) and in L unit (Fig. 6b) for
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Fig. 7. The four upper graphs give the exact envelope function f(z) as a function of z, in L unit, for L/ax = 20 and various
impurity positions zi (indicated by the black dot). The two lower graphs give the same f(z), but for L/ax = 1. The dashed
curves correspond to the usual free electron envelope function f(z) = cos πz/L.

various well widths. This parameter essentially controls
the extension of the wave function around the impurity.
In the large L limit, λ∗ is expected to vary from 1 to 2
when zi goes from 0 to ±L/2, while in the small L limit,
λ∗ goes to 1/2 for all impurity positions. We see that, for
large values of L, λ∗ essentially increases over a distance
ax from the wall. We also see that for a given zi, λ

∗ de-
creases when L decreases, in agreement with the predicted
λ∗ = 1/2 value for all zi when L→ 0.

The last set of Figures 7 shows the exact f(z) for var-
ious impurity positions and two well widths (a small one
L/ax = 1 and a large one L/ax = 20). On the same fig-
ures is shown the usual free electron envelope function
f(z) = cos(πz/L), which of course does not depend of
the impurity position. We see that, for larger L, the ex-
act f(z) is quite different from the envelope function for
all impurity positions, being much flatter than cos(πz/L)
close to the impurity, i.e., in the region which matters for
calculating the energy. We also see that the usual enve-
lope function is of course much better for narrow wells
than for large ones, although the difference is still notice-
able for width as small as ax.

Conclusion

We have determined the ground state energy of an elec-
tron bound to an impurity located at ri inside a quantum

well, by using a variationnal procedure which relies on a
trial wave function f(z)e−|r−ri|/λax in which f(z) is the
exact function which gives the minimum ground state en-
ergy. We show that, for large wells, the exact envelope
function f(z) is quite different from the free electron en-
velope function f(z) = cos(πz/L) used up to now. More-
over, the energy obtained from this free electron f(z) has
spurious terms in (ax/L)2 which makes it unsuitable for
the determination of the exciton dead layer in large width
quantum wells we are going to present in a forthcoming
paper. We have checked that our new method does pro-
duce corrective terms to these large L limits which are
indeed exponentially small.

The energies we find from this new variationnal proce-
dure are lower than the preceding ones by approximatively
10% for intermediate well widths, the previous variation-
nal approach [1] being designed to obtain the large L and
small L limits correctly.

In the procedure presented here, we have considered
a model quantum well with infinitely high barriers only.
Although somewhat heavier, the same functional deriva-
tive method can be extended to finite barrier heights. We
plan to present this extension in a forthcoming publica-
tion.
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Fig. 8. Values of impurity position zi as a function of well width L for which the energy ε(zi, L) is zero. We see that the energy
is always positive for L/ax ≤ 2.4 and always negative L/ax ≥ 4.1.

Appendix: General solution
of the differential equation (19)

Let us introduce the variable v = 1 + |u| and set

f̂(u) = f̃(v). (A.1)

As dv/du = |u|/u, the differential equation (19) satisfied
by f̂ reads in terms of f̃

4vf̃ ′′ + 4(1− v)f̃ ′ + [4(λ− 1) + (1− ν2)v]f̃ = 0 (A.2)

with ν2 = 4χ′ − 1. For large v, this differential equation
reduces to

4f̃ ′′∞ − 4f̃ ′∞ + (1− ν2)f̃∞ = 0. (A.3)

Its two solutions are exp(β±v) with β± = (1± ν)/2. If we
extract this large v limit and set

f̃(v) = eβvk(v) (A.4)

where β is one of the two β±, equation (A.2) gives

vk′′ + [1 + (2β − 1)v]k′ + (β + λ− 1)k = 0 (A.5)

i) for 2β − 1 6= 0, we can transform this equation into the
differential equation for degenerate hypergeometric func-
tions, namely

zω′′ + (γ − z)ω′ − αω = 0 (A.6)

of which two independent solutions [11] areM(α, γ, z) and
U(α, γ, z). Indeed by setting

k(v) = ω(z) (A.7)

with z = (1− 2β)v, equation (A.5) gives

zω′′ + (1− z)ω′ +
β + λ− 1

1− 2β
ω = 0 (A.8)

the solutions of which are the two degenerate hypergeo-
metric functions corresponding to α = (1−β−λ)/(1−2β)
and γ = 1.

As we can a priori take either β = β+ or β− (i.e. 2β−
1 = ±ν), this procedure generates four possible solutions
for the second order differential equation (A.2), namely

M±(v) = e(1±ν)v/2M

(
1
2
± λ− 1/2

ν
, 1,∓νv

)
(A.9)

U±(v) = e(1±ν)v/2 U

(
1
2
± λ− 1/2

ν
, 1,∓νv

)
(A.10)

whereas we only need two independent solutions. We first
note that the two M±(v) are in fact identical due to

M(α, γ, z) = ezM(γ − α, γ,−z). (A.11)

On the opposite, the two U±(v) are different as a simi-
lar relation does not exist for U(α, γ, z). We can however
check that M∓(v), U+(v) and U−(v) are indeed linearly
dependent due to relations between the M(α, γ, z) and the
U(α, γ, z).

As for imaginary ν, U+(v) and U−(v) are complex con-
jugate, we choose the two independent solutions of equa-
tion (A.2) as

M(v) = M+(v) = M−(v) (A.12)

U(v) =
1
2

[U+(v) + U−(v)] (A.13)

since these two functions are real for all real or imagi-
nary ν.
ii) For β = 1/2 i.e. ν = 0, the above procedure fails, (as
obvious from the pathology of M±(v) and U±(v) when
ν → 0). In this case, it is possible to transform equa-
tion (A.5), into the differential equation for Bessel func-
tions. The two independent solutions for k(v) are then
J0(2[(λ−1/2)v]1/2) and Y0(2[(λ−1/2)v]1/2) which are real
for the λ of interest, namely λ > 1/2. When ν = 0, the en-
ergy ε(zi, L) is zero. Figure 8 shows the set of (zi, L) which
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corresponds to ε(zi, L) = 0: For L/ax > 4.1 the energy is
negative for all impurity positions, while for L/ax < 2.4,
it is always positive, due to confinement. Our numerical
calculations for ν 6= 0 are in very good agreement with
this independent calculation for this specific case.
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